熔断器概念

前言

分布式系统中经常会出现某个基础服务不可用造成整个系统不可用的情况, 这种现象被称为服务雪崩效应. 为了应对服务雪崩, 一种常见的做法是手动服务降级. 而Hystrix的出现,给我们提供了另一种选择.

服务雪崩效应的定义

服务雪崩效应是一种因 服务提供者 的不可用导致 服务调用者 的不可用,并将不可用 逐渐放大 的过程.如果所示:

上图中, A为服务提供者, B为A的服务调用者, C和D是B的服务调用者. 当A的不可用,引起B的不可用,并将不可用逐渐放大C和D时, 服务雪崩就形成了.

服务雪崩效应形成的原因

我把服务雪崩的参与者简化为 服务提供者 和 服务调用者, 并将服务雪崩产生的过程分为以下三个阶段来分析形成的原因:

  1. 服务提供者不可用
  2. 重试加大流量
  3. 服务调用者不可用

服务雪崩的每个阶段都可能由不同的原因造成, 比如造成服务不可用的原因有:

  • 硬件故障
  • 程序Bug
  • 缓存击穿
  • 用户大量请求

硬件故障可能为硬件损坏造成的服务器主机宕机, 网络硬件故障造成的服务提供者的不可访问.
缓存击穿一般发生在缓存应用重启, 所有缓存被清空时,以及短时间内大量缓存失效时. 大量的缓存不命中, 使请求直击后端,造成服务提供者超负荷运行,引起服务不可用.
在秒杀和大促开始前,如果准备不充分,用户发起大量请求也会造成服务提供者的不可用.

而形成重试加大流量的原因有:

  • 用户重试
  • 代码逻辑重试

在服务提供者不可用后, 用户由于忍受不了界面上长时间的等待,而不断刷新页面甚至提交表单.
服务调用端的会存在大量服务异常后的重试逻辑.
这些重试都会进一步加大请求流量.

最后, 服务调用者不可用产生的主要原因是:

  • 同步等待造成的资源耗尽

当服务调用者使用同步调用时, 会产生大量的等待线程占用系统资源. 一旦线程资源被耗尽,服务调用者提供的服务也将处于不可用状态, 于是服务雪崩效应产生了.

服务雪崩的应对策略

针对造成服务雪崩的不同原因, 可以使用不同的应对策略:

  1. 流量控制
  2. 改进缓存模式
  3. 服务自动扩容
  4. 服务调用者降级服务

流量控制的具体措施包括:

  • 网关限流
  • 用户交互限流
  • 关闭重试

因为Nginx的高性能, 目前一线互联网公司大量采用Nginx+Lua的网关进行流量控制, 由此而来的OpenResty也越来越热门.

用户交互限流的具体措施有: 1. 采用加载动画,提高用户的忍耐等待时间. 2. 提交按钮添加强制等待时间机制.

改进缓存模式的措施包括:

  • 缓存预加载
  • 同步改为异步刷新

服务自动扩容的措施主要有:

  • AWS的auto scaling

服务调用者降级服务的措施包括:

  • 资源隔离
  • 对依赖服务进行分类
  • 不可用服务的调用快速失败

资源隔离主要是对调用服务的线程池进行隔离.

我们根据具体业务,将依赖服务分为: 强依赖和若依赖. 强依赖服务不可用会导致当前业务中止,而弱依赖服务的不可用不会导致当前业务的中止.

不可用服务的调用快速失败一般通过超时机制, 熔断器和熔断后的降级方法来实现.

使用Hystrix预防服务雪崩

熔断器模式

熔断器模式定义了熔断器开关相互转换的逻辑:

服务的健康状况 = 请求失败数 / 请求总数.
熔断器开关由关闭到打开的状态转换是通过当前服务健康状况和设定阈值比较决定的.

  1. 当熔断器开关关闭时, 请求被允许通过熔断器. 如果当前健康状况高于设定阈值, 开关继续保持关闭. 如果当前健康状况低于设定阈值, 开关则切换为打开状态.
  2. 当熔断器开关打开时, 请求被禁止通过.
  3. 当熔断器开关处于打开状态, 经过一段时间后, 熔断器会自动进入半开状态, 这时熔断器只允许一个请求通过. 当该请求调用成功时, 熔断器恢复到关闭状态. 若该请求失败, 熔断器继续保持打开状态, 接下来的请求被禁止通过.

熔断器的开关能保证服务调用者在调用异常服务时, 快速返回结果, 避免大量的同步等待. 并且熔断器能在一段时间后继续侦测请求执行结果, 提供恢复服务调用的可能.

to be continue…

参考

https://segmentfault.com/a/1190000005988895